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The title refers to problems MICROFILM $§
(s) Lx = LX, Lyx = Hyx

where the linear operators Ll, L2 and the non-necessarily linear operators

—

H1, H2 are defined iIn a linear space X and have values in two linear spaces
X,s» X, respectively.
In Sections 1 and 2 we first discuss same assumptions'which allow us

to reduce (S) to a single equation
(T) X =T -

In Sections 3 and 4 some existence criteria for (S), via (T),
are given.
As an application, a boundary value problem for an ordinary differential

gguation is considered in Sections 5 and 6.

Thé Prese Zj}on of gh\e /@108, origi
(4 .. of
/

onti [2]), has been substané
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improved, as a result of discussions in a Seminar given at RIAS in February
1964, In particular I am indebted to Dr. Jack Hale for various helpful

suggestions and criticisms,

1. There are various problems in Analysis which can be formulated in

the following way:

Let us denote by X, X,, X, three linear vector spaces. Given

- - o on e om mmc e e
VWO Jdinear O vOTS

I.l: X—)Xl, ‘ L2: X—)X,a

and two (non-necessarily linear) operators

E: X-X, H: XX,

we want t0 solve the system of equations

(s) L = EE L% = Byx

Many particular cases of this problem show that it is not unrealistic to assume
that one of the two linear operators, say L;, maps X onto the whole of xl‘

This is equivalent to the hypothesis that

1) L, has & right inverse, i{.e. there exists some linear operator

‘f'l: X]';—)X



such that
() Ll = 4

where Il is the identity operator in Xl.

let us now examine the effect of this assumption. Let x be a

solution of (S). Therefore L,x = H,x, and, by 1), L,(x- L,EXx) =0,

where 01 is the zero element of 'Xi, sothat y = x = L]_Hlxe?Z[]‘.l] ’ theA

mull space of I,. Denoting by L, , the restriction of I, toﬁ[l.l]
’ 4

we shall have I o3 = Lp o(x - hmyx) = L(x - Lmx) = Lx - LI,

and since sz = Hzx, we also have
L, ov = (&, - LoLE))x
il.e. L2,0y = K%, with

=R -Lhh:  Xo%

Since y, K,x are fixed elements of ?[11] and X, respectively we may take

some linear operator

’ A: Xy - 7{[1-1]

such that y = AKQX‘ Therefore 1.2 0 AK2x = K2x and we conclude that if x
’ -
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is a solution of (S) then, under the assumption i) it is also a solution

of

x = MK, - LiE)x + Ly,
(p,00 - T) (& - LLm)x = 0,

(s,)

for same lipear operator A: X, - ?] L,], where I, 1is the identity operator
2 {(*1

in X2 and 02 is the zero element of X2. Conversely if x 1s a solution .

of ( SA) for some A: we have L.x = Ll(Asz + Iiﬂlx) = L‘]:'szx + 11;.1H1x = Ex,
il Tpx = TaGx + D) = Iy x + Lmx = Kk + LT = mx.

Therefore denoting by = the set of solutions of (S), by Z, the set

of solutions of (SA) apd by UAZA the union of the sets Z‘.A for all the linear

operators A: Xp —>¢z [1.1] we have

Tseorem 1: Under the assumption i), = = UpZ,e

Remark 1, If H, H, are constant operators
Bpx=h, Bx=hy xeX
then K2 is also constant

K = By - Tglyhy, xex

and we have that, under 1), the system
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Lr=hp It =l
has éolutions if and only if
by - ity g p - 1)
for some A, or, equivalently, h2 - 1.2;1111 is orthogonal to the range of
the adjoint operator
ALy o - = (I A=) XXy

2. Heving transformed (5) into (S,) we try to reduce (S,) to the first
equation. Therefore we lock for those A which yield the largest possible
4{[1.2’(#& - 12]. Denoting by K2(X) the image of X under K, ve see‘thz»a.t,
for instance, if there exists such a A that

Dtz ot - ) D @)

then the second equation in (s A) is an identity so that it will be sufficient

to solve the first equation of (SA) , 1.e.

() x = Aijx + (-ALL) + L)Ex

in order to have solutions of (S).
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The preceding assumption is equivalent to

i1) There exists a linear operator A: X, —’Z[L‘ll such that

(1,08 - 1) (H, - TLm) =0

where O 1s the zero o;nerétor in X.

In particular this will be satisfied if there exists a A such that
142’01\ -5, = 02, the zero operator in X2, i.e, if

11') The restriction Ino of L, to %[Ll] has a Tight inverse,

i.e., there exists a linear operator A: X, —aﬁ[l.l] such that

oA=L

Still more in particular we may assume that

ii") The restriction L20 of 1.2 Q%Ll] has an inverse, i,e,
t4

there exists a8 linear operator

ot % -»4][11]

such that

(2) L2,01'2;,10 I

and also
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(3) ' I‘.;::,LO I'2,0 =L

vhere T, is the identity operator in ?[Ll].

In this case (T) can be written

(Tg) x = I;}oﬂzx * (41‘5}012;‘1 + L))y
and then not only a solution of (To) is a solution of (S), but the converse
1s also true. In fact if x 1s a solution of (S) then y = x - 'f.lnler[Ll],
hence by (3), x - LiEx = 1'5301'2,0(‘ - '5131‘) = 15}012(‘ - ;131") =
= I5,101'2" - 15}0;'131" = I'5,101‘2" - I"é‘,lo;'lﬁl’ﬁ .

Summing up we have

Theorem 2: Under the hypothesis 1), if 11) (or 11')) holds, every
solution of (T) is also a solution of (8). If 11i") holds then (S) is
equivalent to (To).

Remark 2. Since- the homogeneous system
(So) Ly =0y Ly =0,

can be written

i
o

Lo o¥
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(3) means that y =0 1s the unique solution of (8 ).

Remark 3. In general, 1i") is more restrictive then 11'), If, however,
X, and?[lil are both n-dimensional, then ii') and ii") are actually
equivalent assumptions. In fact, dencting by g/ any iscmorphism of 12

onto 52 [Ll] 2 Lz % an endomorphism of X2. By 11') there exists A such
g 5T
-1 -1
that = h = that i ri
ha 1.2’01\ 12, ence 12,0 A 12, 80 A 1is a right

inverse of L, o</ . Bince X, is finite dimensional, "lA will be a
4 1 ’ L
left inverse too, i.e‘. é; ALZ,O:J = Io’ hence AL2,0 = Io’ and finally
-1
A=
o0
3. Theorem 2 1s ‘& reduction theorem which makes available for (8) the

techniques known for solving the single equatibn ('1'). Such techniques, which
include approximatidﬁ methods, fi_xed point theorems, variational methods, etc.

(See for instance, M. A. Krasnosellskii [1], [2]; H. Ehrmann [2]) require that

the linear space X be made into some topological (or even normed) space and that
same suitable continuity (or even complete cqntinuity) assumptions be imposed

on the operator

(%) T = AR, +(-ALL +T)E .

In the next section we shall establish some existence criteria for (8)
A
assuming, among others, that X is a subspace of a Banach space X and using

classical fixed point theorems to solve (T).
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Better results could certainly be obtained by using more sophisticated
A,
methods, especially if the Banach space X is known to have scme additional

properties,

For instance if H, is a constant operator, then (T) 1s a
Hammerstein equation for which a fairly developed theory is now available if

A
X 1is a Hilbert space (see I.I Kolodner, [1], also H. Fhrmamn [2]).

i, The first two existence criteria are based on Banach's contractive

mapping principle,

Theorem 3. If 1) and 1i) hold, and, in addition

ii1) X 1is a subspace of a Banach space {[‘; X,, X, are(linear) normed

S e8

iv) A, -ALZ'I:]_ + ;1 are bounded (linear) operators;

A
V) H,, H, canbe extended to X in such a way that
1 ” < 1 n1A t " A =
(5) [Bx’ - Hyx 'xi_ Mx? - x4, x', X" e X5 1 = 1,2,
with

(6) Ay +] - ALL +Iy <1

then (S) has solutions.
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In fact from (%), (5), (6) still dencting by T the extension of T to
A
X, it follows

Jrx? - n"]i s ajx' - x"‘é, x?, x"e g

with o<1, hence, by Banach!s theorem, (T) has one (and only ome)

A : A
solution in X, but since by (4), T maps X into X, this solution

aVormos o W md T MM vcomoe lay\ w s PP [
€i100g8 vO A &ana oy 1neldrem 2, \5) has at leas € SOuUviTiie

Using the last statement of Theorem 2 we have

Theorem %: If i1) in Theorem 3 is replaced by i1") and A 1is replaced
-1

by L2 o’ }lx_g_n (8) has one and only one solution.
s 4

The next two criteria are based on Schauder's fixed point theorem,

Theorem 5: If 1) - iv) hold and if, in additiom,

vi) H,, H, can be extended to 9 in such a way that

AR, (-Ainl + 'Iv..l)Hl are completely contimuocus operators of f into X;

vii) For some h, >0, (1 =1, 2) we have

A
(7 ]Hix[xi s h,, x e X; 1=1,2

then (S) has solutions.




-11.

. | A .
By vi) and (4) the operator T from X into X is completely

contimous. Moreover by (4) and (7)

x|2 5 Jaln, + [-aLTy + T,  xeX

A
so that T maps X into a closed ball of X. By Schauder®s Theorem (T)

e {8) has solutions by Theorem 2.

hes solutions; h

has utions;, hene

Theorem 6: If the assumptions i) - iv) and vi) hold and if vii) is

replaced by the weaker hypothesis

vii') There are three mmbers o > 0, hl(a) >0, hz(a) >0, such that

(7%) lHiXIxi s hi(d), [x|dso 1=12
and
(8) Alby(@) + | - ATy + Lfn(a) S @

then (S) has solutions.

P
If we define the two operators K, (1 =1,2)



=12~

H,X, for |x]2 = @

ix-

i
=1
Halx|3" x, for |x]g >«

then Aﬁz and ("ALZ;‘]. +"]‘.'1)1’1’l .- . cmpletely contimous,

Furtber from (7*) we have

A
lgEnla), =zeX 1=32

has a solution Q. But

1816 % 1afnglo) + |-Amghy + Ty [y(a)

hence by (8), ]:’é]x Sq and X will be a solution of (T), i.e. of (8).
Remark 4. Nome of the preceding theorems requires that L, be bounded,

Remark 5, When X, a.nd4z [1.1] are both n-dimensional then the existence of
solutions of (S) under 1), i1") (i.e. under 1), 11'), see Remark 3) can be
proved by using Brouwer'!s fixed point theorem in the euclidean n-dimensional
space, if x =y + ;11311 has a unique solution for each y‘e?[l.l]. ( efr.

H, Ehrmann, [1]).
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5 To 11lustrate the preceding sections by an example let us consider

a general boundary value problem for an ordinary differential equation -

- (9) : dxfat = £(t,x)

where t 1s a real varisble in a given compact interval A = [a,b] of the
real line El_', and £(t,u) 1s an n-vector function of t €A, u e E, the
euclidean n-dimensional space. Beside E® we shall also consider the linear
spaces cl(A), Aa), c(a) anmd Ll(A) of n-vector functions whose components
are of class cl » absolutely contimuous, contimous or I~integrable on A,

respectively, -

The most general bounded linear operator of C(A) into E* is

represented by
xf [\ 4Fx, x € ¢(A)

where F = F(t) 1s an n X n matrix function of t of bourded variation on
A, and the integral is a Riemann-Stieltjes' one, Denoting by h(u) a
contimious n-vector function of u € E° we shall associate with (9) the

"boundary" condition

(10) J, aFx = h(x) .
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This 1s an actual boundary condition for particular F. For instance if

I, for t =a
F= o, for a<t<bd

-I, for t =D

where I,0 are the identity and the zero n X n matrix, respectively,(lo)

reduces to
x(a) - x(b) = n(x).

To interpret (9) (10) as a problem of type (S) we shall replace f£{t,u) by

glt,u) = £(t,u) - A(t)u, where A(t) is an n X n matrix function of t € A,

- so that (9) (10) may be written as

dx/at - A(t)x = g(t,x)

(=) fAde = h(x)

If f 1s contimuous we shall assume A (hence g) also contimuous and we shall

loock for solutions of (E) in the classical sense, x € cl (A)e In this case
X = cl(a), x, =c(a), x,-= B .

If £ 1is subjected to Carathéodory type assumptions, taking a matrix A which

is L-integrable on  A;. we shall look for solutions of (E) 4n the
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Caratheodory sense, x € AC(A). In this case
X =acla), X = Ll(A), X, =E.
In both cases Ly, Ié, H), K, are defined by
Lx = [d/at - A(t)]x, Ix = JA de
Bx = gt,x), Hx = n{x)

A
and H), H, can be obyicusly extended fram X to X = ca).

The mull space [L1] of L, will be the space of the solutions y

of the hamogeneous equation

dy/at _.'.A(t)y =0 .

If we denote by !(t) any fundamental matrix of this equation we may define

LX = £ de)y N (s)x(s)as, X € X

and we see that I’.L'ilx =X, XeX, so that the assumption 1) of Section 1 is

verified. (Of course Ly is no (left) inverse of Ly since

LLx =x - ¥, x € X, where dy/dt - A(t)¥ =0, ¥(a) = x(a)).
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%[Ll] and X, = E® are isomorphic and, denoting by C any
nx n matrix (singular or not), all the linear operators A of X, = E'

into [11] can be represented by
A=1(g)c .
Consequently, if we put
J, aFr(t) =D
the system (sA) of Section 1 becomes here
x = Y(t)on(x) + (-x(t)cf, aF I ()Y Hs)els,x(s))as +
b JE Mo el o)) :
(0¢ - 1) (ax) - J, aF 1% A=)r"Yo)als,(s))as) = O
or, more simply

(x = we)on(x) + [, oft,=)e(s,x(s))as
(2y)

(o - 1) (a(x) - [,aF J% (7)Y (s)als,x(s))as) = O

where G{t,s) 1s a Green matrix defined by
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(t)e fL ar()y (s) + W(t)yN(s), ass<tsd
o(t,s) =

-Y(t)c [: aFy(t)Y 1(3), asts=ssb

The assumption ii) of Section 2 means that for same n X n constant

matrix C
» 4 'y e LY -1- - ] r 'v
(11) {pc - 1) (ufz) - j,oF iz XY (s)els,x{s))as) =0, =xeX

If we dencte by D# the pseudoinverse matrix of D, which is uniquely defined

by
Fuf = oF, (ohy* = oo, oo = o, (ooh)” = oo

(where ¥ Qenotes the transpose) (see R. Penrose, Proc. Cambridge Philos. Soc.,

51, part 3 (1955), 406-413; C. A. Desoer, B. H. Whalen, J. SIAM, 11 (1963),

W2 44T) we see that

%{m)# -I1)D ¢{[m - 11

(In fact if x e/f[nc - 1], 1i.e, x = DCx, we have DD#x =

=DD#DCx=DCx=x, i.e. X € [DD#-I]).

Therefore
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(oof - 1) (8(x) - J,aF [T X(0)Y Ns)els,x(s))as) =0, xeX

i8 the weakest assumption of type (11).

In particular, the assumption 11') (or the equivalent 11i")) means

that D has a true inverse D'l, and in this case
il = et .
4

This case could be called "non-resonant™ extending the terminology used for
the special boundary value problem of finding the periodic harmonic solutions
of ax/at - A(t)x = g(t,x).

6. If g(t,u) 1is contimuous for (t,u)e A x E', both two operators

Hx = n(x), Ex = g(t,x) will map %= (A) into X = CI(A).

A A
Introducing the uniform norm into X = C(A) this is a Banach space so

that 1ii) is satisfied.

Since A = Y(t)C it is readily seen that iy) is also satisfied. To

comply with v) we may assume
Io(ar) - n(u")] S 2 ot -w"l w, w" e
le(t,u) - alt,u")] £ » Ju* - u"], u', u" ¢

where || ]| 1is the euclidean norm, and
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(12) Mo tssz [x(t)c] + (o - a) 3 tflSlgA |c(t,8)] <1

and this, together with (11), will insure the existence of at least one
solution of (E) 1in class Cl (A), by virtue of Theorem 3. In the non-resonant
case, (12) with C replaced by D‘l, will also insure the uniqueness of

such solution, by Theorem k.

1If g{t,u) 1is of Caratheodory type then we msy use Theorem 3 and

Theorem 4 to obtain existence and uniqueness criteria for the solutions of (B)

in class Ac(A). (See G. Santagati, [1]).

For some applications ‘of Theorem 5 and 6 to the problem (E) we refer

to the work by the present author (R. Conti, [1]) and G. Pulvirenti[1].

In the non-resonant case the existence of a unique soclution of (E)
in class AC(A) can be proved under conditions which are more general than

Lipschitz's ones (See P. Santoro, [1])e To complete ocur references to problem

(E), we shall mention the work by W. M. Whyburn, [1], [2] and by G. Santagati [1],

who studied the contimuous dependence of the solution of (E) on the data

A, F, h, e
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